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1. Statement of the problem. Much work has been done on the use 
of approximate methods of linearization in the analysis of nonlinear 
dynamical systems subjected to the action of random disturbances. In some 
such cases there arises the necessity for an exact solution of the prob- 
lem, for the determination of the error in the approximate methods, or 
for the solution when the problem does not lend itself to the application 
of the method of linearization. 

In this work there is considered the behavior of linear dynamical 
systems whose input is a nonlinear function of a stationary random pro- 
cess X(t), i.e. a system described by the equation 

dn Y (t) 
- + a1 (tj 

d-l Y (t) 

dP dtn--l 
+ . . . +- an (0 y (q = dj ix (tj1 (l.lj 

‘Ihe probability characteristics of the process X(t) is assumed to be 
known. Y(t) is the unknown function to be found, characterizing the 
state of the system, al(t), I = 1, . . . , n are given functions of time. 
lhe nonlinear function fj(X) (j = 1, 2, 3) will be assumed here as one 
of the following types: 

fl (X) = sign X (1.2) 

fi (X) = $ [sign (X - a) + sign (X + a)] (1.3) 

f3 (X) = $ [(X + a) sign (X + a) - (X - a) sign (X - a)] (1.4) 

The first function corresponds to the nonlinear link of the type 
uyes-nOB ; the second one to the link of the type “yes-nom, but it has a 
zone of insensitivity; the third function corresponds to a link which 
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has a linear interval and an interval of Wsaturationm 
nonlinear link in the operation of a linear dynamical 
entire problem a nonlinear one, which complicates its 
from the viewpoint of the theory of random functions. 

The presence of a 
system makes the 
solution, especially 

The solution of Equation (1.1) (we assume for the sake of simplicity 
that we have zero initial conditions) can be written in the form 

y (4 = \ p (t, t1) lj 1-x- (4)l dt, (1.5) 
il 

Here p(t, t,) is the weight function of the system expressible in 
terms of a system of independent integrals (solutions) of the homogeneous 
equation corresponding to (1.1). Raising both parts of (1.5) to the 
degree m and applying the operation for finding the mathematical expecta- 
tion to both sides of the obtained equation, one can easily establish that 
any moment of the ordinate of the random function Y(t) can be expressed 
by means of an integral of an expression containing mixed moments of the 
random function fj [ X(t) 1 . For example, for the mathematical expectation 
and dispersion of the random quantity Y(t) we obtain 

In consequence of the hypothesis made at the very beginning on the 
stationary nature of the random function X(t), the mathematical expecta- 
tion U[fi[X(t)I~ is constant, and M(fi[X(t,)I fj[ X(t,)ll will be a 
function of 7 = t, - tl and will not be dependent on the arguments tl 
and t2 separately. Therefore, Formula (1.6) can be represented in the 
form 

(1.7) 

t zt--r 

5;= \{ \ P(& E-~P@, E-t r)d~}M{fjIX(t)lij[X(t$-+)l}da Wi 

Thus, the first two moments of the solution of Equation (1.1) can be 
found if one knows the mathematical expectations 

pi = II/I {fj IX @)I>, vi CT) =: iv {fi IX (t)i fj ix (t -t a> (1.9) 

If the first and second laws of the distribution of the random func- 
tion X(t) are known, then the determination of ~j and vi can be carried 
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out by means of the general formulas for finding the mathematical ex- 
pectation, but the computations required for this are quite cumbersome 
even for the simplest law of distribution of the random function X(t). 
It will be more advantageous to use a different method of evaluation in 
which the function fj(X) is represented as a Fourier transform of the 
transfer function corresponding to fj(X). This makes it possible to ex- 
press the mathematical expectation in (1.9) as a characteristic function 
of the ordinate X(t). For the application of this method it is, however, 
necessary either to assume the existence of the Fourier integral of the 
function f.(X) (which is not valid, for example, for the nonlinear types 
(1.2), (1.4) and (1.4)) or one has to select the appropriate form of the 
contour of integration [ 1 1 , 

These difficulties can be avoided if one uses the integral representa- 
tion of the right-hand side of (1.1) by the method which was applied by 
Markov 12 1 for the proof of the limit theorem of the theory of probabil- 
ity, and which is based on the use of the Dirichlet integral. In accord- 
ance with the latter we have 

(1.10) 

Formula (1.7) makes it possible to obtain an integral representation 
for fj(X) whose substitution into (1.9) yields at once the moments of 
the function Y(f) in terms of the characteristic function of the ordi- 
nates X( t 1. 

2. Evaluation of the moments of an essentially nonlinear 
expression of the type fjI:X(t)l . In view of (1.2) and (1.7) we 

have 

fl [X(t)] = -$ r eiUX (t) A$ 
-cc 

Hence 

(2-l) 

(2.2) 

In an analogous manner, we obtain for the mixed moments of the random 
quantities -fi C X( t,) 1 and fj C X( tz) 1 the expression 

(2.3) 

where E( ul, u2) is the characteristic function of the system of random 
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quantities X(t,) and X(t,). 

For the normal random process one can evaluate the integral (2.2)) 
and the integral (2.3) becomes considerably simplified. Indeed, suppose 
that x is the mathematical expectation, c-2 the dispersion and k(r) the 
normalized correlation functions of the rkdom process X(t). Then 

E (u,, u2) = exp 
i 

5x2 
- 2 [Ul 2 -j uz2 + 2k (t) ZL~U~] + iu,z + iu,x 

1 

and in place of (2.2) we obtain 

r&{l’l[X(i)]}=rDi$) ~+q+&[e-G&J 
1 

In the evaluation of (2.3) we must note that the integral 

can be transformed, through differentiation with respect 

form 

where 

(2.4) 

~2.5) 

(2.6) 

(2.7) 

to Y, into the 

J’herefore, in view of (2.5) and (2.9), we shall have in place of 
(2.3) the expression 

When x = 0, the integral (2.10) can be evaluated by elementary means. 
This yields 

v1 (7) = ; sin-’ k(a) (Z.ll) 

In en analogous manner, one can evaluate the moments of the nonlinear 

expression f2 I: X( t)l , which on the basis of (1.7) and (1.10) can be re- 
presented in the form 
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f2[X(t)] = & i {exp[iu(X - a)] + exp[iu(X + a)]} $- (2.12) 

---co 

Evaluating the mathematical expectation of both parts of this equa- 

tion, we obtain 

eiau E (u) $ + $ \ e--iau E (u) +} 
---a3 -cc 

Since the multiplication of a characteristic function by exp[ * iau 1 
is equivalent to the addition of f a to the mathematical expectation, we 

obtain on the basis of (2.2) and (2.6) for the normal random process the 

exnression 

(2.13) 

Analogously, the substitution of (2.12) in the product f2[ X(t,) ] 

f2[X(t2) 1 yields 

1 T 
% = - 2n” 

s\ 
. {exp [ia (ul + up)] + exp [ia(u,- u,)]} E (ul, u?,f$$ 

--co 

Making use of the integral (2.8), we obtain 

(2.14) 

When x = 0 the last formula reduces to the simpler form 

For the nonlinear expression (1.4) we have, in view of (1.10) 

/3[x(t)l = &{ 7 
l 

exp [iu (X -1 n)](X + u)$ - 

--cc 

- 7 exp[iu(X - a)](X- a)$] (2.16) 

Evaluating the mathematical expectation of both parts of the last 

equation, and taking into account the fact that 
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we obtain 

which for the normal law becomes 

Making use of (2.16) in the evaluation of v3(t), we obtain, in the 
case of the normal random process with zero mathematical expectation, 
the following expression: 

2k a2 (I+ 5)’ - ~9 11 - E.7 
1 

d5, 
-n” 

, 
-&h_ (1 - E2Y 1/iT ’ 

(2.18) 

The derived moments of the nonlinear expressions f; [ X(t) I make it 
possible to compute the mathematical 
the solution of F,quation (1.1) which 
(1.8). 

3. Exitrgl es on tbt app1icsti0n of 
of example ofi the application of the 
us consider the equation 

expectation and- the dispersion of 
are given by Formulas (1.7) and 

i&% method. 1. As the simplest type 
method developed in this work, let 

$ Y (t) = m +- n sign X (t) (3.1) 

This equation describes, for example, the deviation Y(t) of the axis 
of a gyroscope in consequence of Coulomb friction in the supports, if 
the gyroscope is installed on a ship in such a manner that the horizontal 
axis of the support coincides with the diametral plane of the ship. In 
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this case the constants I and n are determined by the structural para- 
meters of the gyroscope, while the random function X(t) is the angular 
velocity of ship’s rolling. The angle Ott) of the heeling of the ship 
can be considered to be a stationary normal random function of time whose 
correlation function is given by the equation 

X,(z) =+?l” (cos fit + $ sin p 1 T 1) 

where the constants cz, @ and oe depend on the nature of the waves of the 
sea and on the parameters of the ship. 

Since the integration of Equation (3.1) for zero initial conditions 
yields 

t 

Y (t) = mt + n 
c 

sign X (tl) dt, (3.3) 

; 

the application of Formulas (2.6), (2.11), (1.7) and (1.8) will give 
t 

y(t) = mt, 6; = 4~~9 ;, (t - Z) sin-l \ k(Z) dt (3.4) 

where, in accordance with (3.2). we have 

k (2) = e -“l’iicosi3z+~sinj3/t/) 

When t >> l/a, the upper limit of integration in the integral (3.4) 
can be considered as infinite. This yields 

co 02 

% 2zuat-b n = 4nn2 s sin-l k(z) dz, b = 4m2 c z sin-’ h-(z) rlz 
> 

(3.5) 
., 

(! 0 

In the given example we shall make use of the method of statistical 
linearization [ 2 1, that is, we shall make use of the approximating 
substitution 

sign X (t) = AX (t) + B (5.6) 

where the constants A and B axe so chosen that the first and second 
moments on the left- and right-hand sides of (3.6) are equal. In this 
manner we obtain 

c$/s = 2n2A%,2 [ 1 - k, (t)] (3.7) 

Therefore. in the given case, the method of statistical linearization 
gives even a qualitatively incorrect result: in place of the linear de- 
pendence on time we obtain Expression (3.7) which tends to the constant 
value 2n2A2u 2 0' 
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2. AS a more complicated example let us consider the system of equa- 
tions 

d2P (t) 
-- --p -$-a (1) = - kl sign XI (t), d$ CI (t) + q -$- 3 (t) = k2 sign X2 (t) 

cd12 (3.3) 

where p, Q, k, and k, are constants, while X,( t) and X2(t) are independent 
stationary functions of time. Such a type of equation arises, for example, 
in the investigation of the behavior of a gyrovertical installed on a 
rolling boat with Coulomb friction between the axes and the support of 
the gyroscope. In this case, XI(t) is the angular velocity of heaving, 
X,(t) is the angular velocity of rolling, and the coefficients of the 
equation are determined by the structural parameters of the gyroscope. 
For the solution of this problem it is convenient to introduce into (3.8) 
a complex variable 

After this, the original system of equations can be replaced by one equa- 
tion 

g 5 (t) -- ih $ < (t) = -- ilcl sign X1 (t) + x2 sign X2 (t) (3.10) 

where 

The solution of (3.10) under zero initial conditions will be 

Taking into account (3.9). we can find the mathematical expectation 
and dispersion of the functions a(t) and p(t) by means of the relations 

M [a (t)] = f f/cr Of15 (til + M IL.* (t)lly M [P (f)l = ;- i/p I&f Ib (01 - M IC* (tfl, 
(3.12) 

+ B[a (f)] +a L)[;3 (t)l = M{ I j(t) 17 -$iJf ia (t)l}” - $y C&f [P (91,” (3.13) 

+ U[a (t)]- $ IQ (t)] = + WC (t)l”+ [C* it)l’1- $ W P (t)lY + -4 W IP (t)lY 

Having made use of the integral representation (1.10). we can express 
all mathematical expectations which appear in (3.12) and (3.13) in terms 
of the characteristic fnnction of the ordinates of the random functions 
X,(t) and X2(t). Since these computations are entirely analogous to those 
of the preceding section, we shall give only the final results which were 
obtained for the normal random processes X,(t) and X,(t) with zero 
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mathematical expectations. In this case 

M [b (t)l = 0, or M [a(t)] = 0, 

sys terns 

M IP (t)l = 0 

669 

i~tli(t)iZ)=&~{(1- I( ‘G cos hz -I- 1) + + [sin ht - sin h (1 - z) -sin ht] x 

0 
x [x2* sin- 1 

k2 (T) + xl2 Sin-’ kl (z)] dz (3.14) 

y{[5(“)Il)=-&\{(&r) +~L1+~ei~‘--~ei”L+~e’“(“--)- 

0 
_ ,ih (1--r) -1 

[x22 sin kB (z) - xl2 sin-’ kl (T)] dz (3.15) 

where k,(r) and k, (r ) are normalized correlation functions XI(t) and 

X2(t). respectively. Formulas (3.14) and (3.15). together with (3.13), 
permit one to compute the values of the dispersions D[ a(t) I and D[B( t)]. 

In an analogous manner one can carry oat the solution to the end for 
other types of nonlinearities that may appear on the right-hand sides of 
Equations (3.8). 

4. The application of the method to more complicated problems. The 
complication of the problem can occur in three directions. Firstly, one 
can do away with the normality and the stationary nature of the random 
functions which appear in the equation in a nonlinear manner. This 
generalization does not introduce any major difficulties. The difference 
consists only in the fact that the characteristic functions which appear 
during the process of evaluating the dispersion of the solutions of the 
equations will be of greater complexity. Secondly, one may pass to the 
consideration of nonlinear expressions of the hysterisis type of charac- 
teristics, for example, of the form 

+ 1, if X(t) > a, or - a d X(t) < a, but X(t) lies in the 

interval (- a, a) intersecting the level X(t) = a from 

above 
f[ X(t)]= 

- 1. if X(t) <- a, or- a 

on the interval (- a, a) 

X(t) = - a from below 

The nonlinearities of this type can 
of the ordinates of the function X(t). 
one obtains hereby turn out to be more 

(4.1) 
Q X(t) G a, but X(t) lies 

intersecting the level 

be expressed explicitly in terms 
but the integral expressions which 
complicated than they are for the 

nonlinearities treated in the present work; the derivation of the 
mathematical expectation and dispersion of the solution of the equations 



670 A.A. Sveshnikov 

becomes considerably more involved. 

The third direction in which one can advance in order to complicate 
the problem is the consideration of equations in which the arguments of 
the nonlinear terms are not random functions with given probability 
characteristics but are algebraic sums of such functions and of the 
solution function. An example of this type is furnished by the equation 

-$-Y (t) = 11t + nfj [X (t) -Y (t)] (G?) 

or by the equation 

CPY (t) P--l Y 
_ i- a1 it1 - 

(t) 

dP 
____ i_. . + ii, (“) Y (t) = fj [X (t) -Y (L)] 

dtn-_l 
(4.3) 

which differ from Equations (3.1) and (l.l), respectively. only in their 
right-hand sides. 

It is not possible to obtain a general method of solution for these 
problems as easily as for problems in which the arguments of the non- 
linear functions are given random functions. Nevertheless, the method 
suggested in the present work is useful for obtaining an approximate 
solution in case the solution of the equation under consideration may be 
assumed to be small compared to the ordinates of the disturbances of the 
random function. In such a case one can find the solution of an equation 
of the type (4.3) by the method of successive approximations, whose 
essence consists of the following. First, one drops the solution fnnc- 
tion which appears in the argument of the nonlinearity, and one deter- 
mines the moments of the solutions of the obtained equations in the same 
way as was done above for the mathematical expectation and dispersion. 
After this one repeats the calculation from the beginning, but now one 
replaces the characteristic functions of the given random functions by 
the characteristic functions of the algebraic sums of these functions 
and of the solutions of the equations found in the first approximation. 
Since the characteristic functions will not be normalized, one may use 
for their evaluation Edgeworth’s series [ 4 I, keeping in it only those 
terms which can have a noticeable effect on the result. The moments of 
the second approximate solutions found in this manner can be used for 
the derivation of the succeeding approximations. The finding of each 
successive approximation is connected with great difficulties. Therefore, 
in problems of the indicated type, the given method is to be recommended 
basically only then when the error in the first approximation is sought, 
and when it can be assumed from general considerations that the first 
approximation will give satisfactory results. 

We shall explain what we have said with the example of Equation (4.2), 
which for j = 1 describes the deviation of a gyrovertical, with a contact 
characteristic correction, installed on a rolling ship. In this case the 
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normal random function X(t), which describes the random deflection of 
the pendulum of the deflector, has a dispersion which is considerably 
greater than the dispersion of the angle Y(t) characterizing the devia- 
tion of the gyrovertical. Therefore, the application of the method of 
successive approximations is expedient. Dropping in the first approxima- 

tion Y(t) on the right-hand side of (4.2), we obtain Equation (3.1). The 
dispersion of its solution is given by (3.6). For the purpose of finding 
the correlation function Y(t) in its first approximation,which is required 
for finding the dispersion Y(t) in the second approximation, it is 
sufficient to multiply (3.4) term-wise by a similar equation written for 
another argument t, and with the use of (1.10) to find the mathematical 
expectation of each part of the obtained equation. After some transforma- 
tions analogous to those used in Sections 2 and 3, we obtain the next 
expression for the correlation function of Y(t): 

K,(tl, tz) = $ 
. n 

u 
sin-I Ii (E - q) dg &q 

;,li 

(G.4) 

Analogous arguments yield for the first approximation of the correla- 
tion function of the connection Rzy(tl, t,) of the random functions X(t) 
and Y(t) 

Rxy (tl, tz) = n h- (tl- E) dE 
0 

(4.5) 

For finding the third, fourth and higher moments of Y(t) it is neces- 
sary to take the product of three, four and more expressions of the type 
(3.4) for various values of the argument t. and to determine the mathe- 
matical expectations of both parts of the obtained equations. The order 
of computation remains the same but the number of integrations is in- 
creased, which complicates the process of computation. In order to find 
the second approximations of the moments of Y(t) one begins with the 
equation 

where the indices 1 and 2 denote the first and second approximations. 
Since the dispersion of Y,(t) is small compared to the dispersion of 
X(t). the difference 

2 (E) = x (E) - Yl (El 

can be considered a normal random function. Hence, repeating the calcula- 
tions of Section 2 for the dispersion of Y2( t), we obtain 

D [Y, (t)] = $ i 5 sin’-’ k, (E, q) dE dq 

00 
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where k, ( tl, t,) is the normalized correlation function of Z(t) deter- 
mined by the equation 

where K (t 
Y I* f2) and RZy(tl. t2) are taken from the first approximation. 

The succeeding approximations can be obtained in a similar way. 
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